tf.raw_ops.SymbolicGradient
Stay organized with collections
Save and categorize content based on your preferences.
Computes the gradient function for function f via backpropagation.
tf.raw_ops.SymbolicGradient(
input, Tout, f, name=None
)
Args |
input
|
A list of Tensor objects. a list of input tensors of size N + M;
|
Tout
|
A list of tf.DTypes that has length >= 1 .
the type list for the input list.
|
f
|
A function decorated with @Defun.
The function we want to compute the gradient for.
The function 'f' must be a numerical function which takes N inputs and
produces M outputs. Its gradient function 'g', which is computed by
this SymbolicGradient op is a function taking N + M inputs and
produces N outputs.
I.e. if we have
(y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
then, g is
(dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
dL/dy1, dL/dy2, ..., dL/dy_M),
where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
loss function). dL/dx_i is the partial derivative of L with respect
to x_i.
(Needs some math expert to say the comment above better.)
|
name
|
A name for the operation (optional).
|
Returns |
A list of Tensor objects of type Tout .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-10-27 UTC."],[],[]]