View source on GitHub
|
Maps tensor of strings into int64 indices based on mapping. (deprecated)
tf.contrib.lookup.string_to_index(
tensor, mapping, default_value=-1, name=None
)
This operation converts tensor of strings into int64 indices.
The mapping is initialized from a string mapping tensor where each element
is a key and corresponding index within the tensor is the value.
Any entry in the input which does not have a corresponding entry in 'mapping'
(an out-of-vocabulary entry) is assigned the default_value
Elements in mapping cannot be duplicated, otherwise the initialization
will throw a FailedPreconditionError.
The underlying table must be initialized by calling
session.run(tf.compat.v1.tables_initializer) once.
For example:
mapping_strings = tf.constant(["emerson", "lake", "palmer"])
feats = tf.constant(["emerson", "lake", "and", "palmer"])
ids = tf.contrib.lookup.string_to_index(
feats, mapping=mapping_strings, default_value=-1)
...
tf.compat.v1.tables_initializer().run()
ids.eval() ==> [0, 1, -1, 2]
Args | |
|---|---|
tensor
|
A 1-D input Tensor with the strings to map to indices.
|
mapping
|
A 1-D string Tensor that specifies the mapping of strings to
indices.
|
default_value
|
The int64 value to use for out-of-vocabulary strings.
Defaults to -1.
|
name
|
A name for this op (optional). |
Returns | |
|---|---|
The mapped indices. It has the same shape and tensor type (dense or sparse)
as tensor.
|
View source on GitHub