View on TensorFlow.org
|
Run in Google Colab
|
View source on GitHub
|
Download notebook
|
TensorFlow Lite (TFLite) is a set of tools that helps developers run ML inference on-device (mobile, embedded, and IoT devices). The TFLite converter is one such tool that converts existing TF models into an optimized TFLite model format that can be efficiently run on-device.
In this doc, you'll learn what changes you need to make to your TF to TFLite conversion code, followed by a few examples that do the same.
Changes to your TF to TFLite conversion code
If you're using a legacy TF1 model format (such as Keras file, frozen GraphDef, checkpoints, tf.Session), update it to TF1/TF2 SavedModel and use the TF2 converter API
tf.lite.TFLiteConverter.from_saved_model(...)to convert it to a TFLite model (refer to Table 1).Update the converter API flags (refer to Table 2).
Remove legacy APIs such as
tf.lite.constants. (eg: Replacetf.lite.constants.INT8withtf.int8)
// Table 1 // TFLite Python Converter API Update
| TF1 API | TF2 API |
|---|---|
tf.lite.TFLiteConverter.from_saved_model('saved_model/',..) |
supported |
tf.lite.TFLiteConverter.from_keras_model_file('model.h5',..) |
removed (update to SavedModel format) |
tf.lite.TFLiteConverter.from_frozen_graph('model.pb',..) |
removed (update to SavedModel format) |
tf.lite.TFLiteConverter.from_session(sess,...) |
removed (update to SavedModel format) |
// Table 2 // TFLite Python Converter API Flags Update
| TF1 API | TF2 API |
|---|---|
allow_custom_opsoptimizationsrepresentative_datasettarget_spec inference_input_typeinference_output_typeexperimental_new_converterexperimental_new_quantizer |
supported |
input_tensorsoutput_tensorsinput_arrays_with_shapeoutput_arraysexperimental_debug_info_func |
removed (unsupported converter API arguments) |
change_concat_input_rangesdefault_ranges_statsget_input_arrays()inference_typequantized_input_statsreorder_across_fake_quant |
removed (unsupported quantization workflows) |
conversion_summary_dirdump_graphviz_dirdump_graphviz_video |
removed (instead, visualize models using Netron or visualize.py) |
output_formatdrop_control_dependency |
removed (unsupported features in TF2) |
Examples
You'll now walk through some examples to convert legacy TF1 models to TF1/TF2 SavedModels and then convert them to TF2 TFLite models.
Setup
Start with the necessary TensorFlow imports.
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import numpy as np
import logging
logger = tf.get_logger()
logger.setLevel(logging.ERROR)
import shutil
def remove_dir(path):
try:
shutil.rmtree(path)
except:
pass
Create all the necessary TF1 model formats.
# Create a TF1 SavedModel
SAVED_MODEL_DIR = "tf_saved_model/"
remove_dir(SAVED_MODEL_DIR)
with tf1.Graph().as_default() as g:
with tf1.Session() as sess:
input = tf1.placeholder(tf.float32, shape=(3,), name='input')
output = input + 2
# print("result: ", sess.run(output, {input: [0., 2., 4.]}))
tf1.saved_model.simple_save(
sess, SAVED_MODEL_DIR,
inputs={'input': input},
outputs={'output': output})
print("TF1 SavedModel path: ", SAVED_MODEL_DIR)
# Create a TF1 Keras model
KERAS_MODEL_PATH = 'tf_keras_model.h5'
model = tf1.keras.models.Sequential([
tf1.keras.layers.InputLayer(input_shape=(128, 128, 3,), name='input'),
tf1.keras.layers.Dense(units=16, input_shape=(128, 128, 3,), activation='relu'),
tf1.keras.layers.Dense(units=1, name='output')
])
model.save(KERAS_MODEL_PATH, save_format='h5')
print("TF1 Keras Model path: ", KERAS_MODEL_PATH)
# Create a TF1 frozen GraphDef model
GRAPH_DEF_MODEL_PATH = tf.keras.utils.get_file(
'mobilenet_v1_0.25_128',
origin='https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.25_128_frozen.tgz',
untar=True,
) + '/frozen_graph.pb'
print("TF1 frozen GraphDef path: ", GRAPH_DEF_MODEL_PATH)
1. Convert a TF1 SavedModel to a TFLite model
Before: Converting with TF1
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_saved_model(
saved_model_dir=SAVED_MODEL_DIR,
input_arrays=['input'],
input_shapes={'input' : [3]}
)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
# Ignore warning: "Use '@tf.function' or '@defun' to decorate the function."
After: Converting with TF2
Directly convert the TF1 SavedModel to a TFLite model, with a smaller v2 converter flags set.
# Convert TF1 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir=SAVED_MODEL_DIR)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
tflite_model = converter.convert()
2. Convert a TF1 Keras model file to a TFLite model
Before: Converting with TF1
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_keras_model_file(model_file=KERAS_MODEL_PATH)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
After: Converting with TF2
First, convert the TF1 Keras model file to a TF2 SavedModel and then convert it to a TFLite model, with a smaller v2 converter flags set.
# Convert TF1 Keras model file to TF2 SavedModel.
model = tf.keras.models.load_model(KERAS_MODEL_PATH)
model.save(filepath='saved_model_2/')
# Convert TF2 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir='saved_model_2/')
tflite_model = converter.convert()
3. Convert a TF1 frozen GraphDef to a TFLite model
Before: Converting with TF1
This is typical code for TF1-style TFlite conversion.
converter = tf1.lite.TFLiteConverter.from_frozen_graph(
graph_def_file=GRAPH_DEF_MODEL_PATH,
input_arrays=['input'],
input_shapes={'input' : [1, 128, 128, 3]},
output_arrays=['MobilenetV1/Predictions/Softmax'],
)
converter.optimizations = {tf.lite.Optimize.DEFAULT}
converter.change_concat_input_ranges = True
tflite_model = converter.convert()
After: Converting with TF2
First, convert the TF1 frozen GraphDef to a TF1 SavedModel and then convert it to a TFLite model, with a smaller v2 converter flags set.
## Convert TF1 frozen Graph to TF1 SavedModel.
# Load the graph as a v1.GraphDef
import pathlib
gdef = tf.compat.v1.GraphDef()
gdef.ParseFromString(pathlib.Path(GRAPH_DEF_MODEL_PATH).read_bytes())
# Convert the GraphDef to a tf.Graph
with tf.Graph().as_default() as g:
tf.graph_util.import_graph_def(gdef, name="")
# Look up the input and output tensors.
input_tensor = g.get_tensor_by_name('input:0')
output_tensor = g.get_tensor_by_name('MobilenetV1/Predictions/Softmax:0')
# Save the graph as a TF1 Savedmodel
remove_dir('saved_model_3/')
with tf.compat.v1.Session(graph=g) as s:
tf.compat.v1.saved_model.simple_save(
session=s,
export_dir='saved_model_3/',
inputs={'input':input_tensor},
outputs={'output':output_tensor})
# Convert TF1 SavedModel to a TFLite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir='saved_model_3/')
converter.optimizations = {tf.lite.Optimize.DEFAULT}
tflite_model = converter.convert()
Further reading
- Refer to the TFLite Guide to learn more about the workflows and latest features.
- If you're using TF1 code or legacy TF1 model formats (Keras
.h5files, frozen GraphDef.pb, etc), please update your code and migrate your models to the TF2 SavedModel format.
View on TensorFlow.org
Run in Google Colab
View source on GitHub
Download notebook