TFDS provides a collection of ready-to-use datasets for use with TensorFlow, Jax, and other Machine Learning frameworks.
It handles downloading and preparing the data deterministically and constructing a tf.data.Dataset
(or np.array
).
View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
Installation
TFDS exists in two packages:
pip install tensorflow-datasets
: The stable version, released every few months.pip install tfds-nightly
: Released every day, contains the last versions of the datasets.
This colab uses tfds-nightly
:
pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
2024-12-14 12:41:53.251913: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered WARNING: All log messages before absl::InitializeLog() is called are written to STDERR E0000 00:00:1734180113.275388 782567 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered E0000 00:00:1734180113.282524 782567 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
Find available datasets
All dataset builders are subclass of tfds.core.DatasetBuilder
. To get the list of available builders, use tfds.list_builders()
or look at our catalog.
tfds.list_builders()
['abstract_reasoning', 'accentdb', 'aeslc', 'aflw2k3d', 'ag_news_subset', 'ai2_arc', 'ai2_arc_with_ir', 'amazon_us_reviews', 'anli', 'answer_equivalence', 'arc', 'asqa', 'asset', 'assin2', 'asu_table_top_converted_externally_to_rlds', 'austin_buds_dataset_converted_externally_to_rlds', 'austin_sailor_dataset_converted_externally_to_rlds', 'austin_sirius_dataset_converted_externally_to_rlds', 'bair_robot_pushing_small', 'bc_z', 'bccd', 'beans', 'bee_dataset', 'beir', 'berkeley_autolab_ur5', 'berkeley_cable_routing', 'berkeley_fanuc_manipulation', 'berkeley_gnm_cory_hall', 'berkeley_gnm_recon', 'berkeley_gnm_sac_son', 'berkeley_mvp_converted_externally_to_rlds', 'berkeley_rpt_converted_externally_to_rlds', 'big_patent', 'bigearthnet', 'billsum', 'binarized_mnist', 'binary_alpha_digits', 'ble_wind_field', 'blimp', 'booksum', 'bool_q', 'bot_adversarial_dialogue', 'bridge', 'bucc', 'c4', 'c4_wsrs', 'caltech101', 'caltech_birds2010', 'caltech_birds2011', 'cardiotox', 'cars196', 'cassava', 'cats_vs_dogs', 'celeb_a', 'celeb_a_hq', 'cfq', 'cherry_blossoms', 'chexpert', 'cifar10', 'cifar100', 'cifar100_n', 'cifar10_1', 'cifar10_corrupted', 'cifar10_h', 'cifar10_n', 'citrus_leaves', 'cityscapes', 'civil_comments', 'clevr', 'clic', 'clinc_oos', 'cmaterdb', 'cmu_franka_exploration_dataset_converted_externally_to_rlds', 'cmu_play_fusion', 'cmu_stretch', 'cnn_dailymail', 'coco', 'coco_captions', 'coil100', 'colorectal_histology', 'colorectal_histology_large', 'columbia_cairlab_pusht_real', 'common_voice', 'conll2002', 'conll2003', 'controlled_noisy_web_labels', 'coqa', 'corr2cause', 'cos_e', 'cosmos_qa', 'covid19', 'covid19sum', 'crema_d', 'criteo', 'cs_restaurants', 'curated_breast_imaging_ddsm', 'cycle_gan', 'd4rl_adroit_door', 'd4rl_adroit_hammer', 'd4rl_adroit_pen', 'd4rl_adroit_relocate', 'd4rl_antmaze', 'd4rl_mujoco_ant', 'd4rl_mujoco_halfcheetah', 'd4rl_mujoco_hopper', 'd4rl_mujoco_walker2d', 'dart', 'databricks_dolly', 'davis', 'deep1b', 'deep_weeds', 'definite_pronoun_resolution', 'dementiabank', 'diabetic_retinopathy_detection', 'diamonds', 'div2k', 'dlr_edan_shared_control_converted_externally_to_rlds', 'dlr_sara_grid_clamp_converted_externally_to_rlds', 'dlr_sara_pour_converted_externally_to_rlds', 'dmlab', 'doc_nli', 'dolphin_number_word', 'domainnet', 'downsampled_imagenet', 'drop', 'dsprites', 'dtd', 'duke_ultrasound', 'e2e_cleaned', 'efron_morris75', 'emnist', 'eraser_multi_rc', 'esnli', 'eth_agent_affordances', 'eurosat', 'fashion_mnist', 'flic', 'flores', 'food101', 'forest_fires', 'fractal20220817_data', 'fuss', 'gap', 'geirhos_conflict_stimuli', 'gem', 'genomics_ood', 'german_credit_numeric', 'gigaword', 'glove100_angular', 'glue', 'goemotions', 'gov_report', 'gpt3', 'gref', 'groove', 'grounded_scan', 'gsm8k', 'gtzan', 'gtzan_music_speech', 'hellaswag', 'higgs', 'hillstrom', 'horses_or_humans', 'howell', 'i_naturalist2017', 'i_naturalist2018', 'i_naturalist2021', 'iamlab_cmu_pickup_insert_converted_externally_to_rlds', 'imagenet2012', 'imagenet2012_corrupted', 'imagenet2012_fewshot', 'imagenet2012_multilabel', 'imagenet2012_real', 'imagenet2012_subset', 'imagenet_a', 'imagenet_lt', 'imagenet_pi', 'imagenet_r', 'imagenet_resized', 'imagenet_sketch', 'imagenet_v2', 'imagenette', 'imagewang', 'imdb_reviews', 'imperialcollege_sawyer_wrist_cam', 'irc_disentanglement', 'iris', 'istella', 'jaco_play', 'kaist_nonprehensile_converted_externally_to_rlds', 'kddcup99', 'kitti', 'kmnist', 'kuka', 'laion400m', 'lambada', 'lfw', 'librispeech', 'librispeech_lm', 'libritts', 'ljspeech', 'lm1b', 'locomotion', 'lost_and_found', 'lsun', 'lvis', 'malaria', 'maniskill_dataset_converted_externally_to_rlds', 'math_dataset', 'math_qa', 'mctaco', 'media_sum', 'mlqa', 'mnist', 'mnist_corrupted', 'movie_lens', 'movie_rationales', 'movielens', 'moving_mnist', 'mrqa', 'mslr_web', 'mt_opt', 'mtnt', 'multi_news', 'multi_nli', 'multi_nli_mismatch', 'natural_instructions', 'natural_questions', 'natural_questions_open', 'newsroom', 'nsynth', 'nyu_depth_v2', 'nyu_door_opening_surprising_effectiveness', 'nyu_franka_play_dataset_converted_externally_to_rlds', 'nyu_rot_dataset_converted_externally_to_rlds', 'ogbg_molpcba', 'omniglot', 'open_images_challenge2019_detection', 'open_images_v4', 'openbookqa', 'opinion_abstracts', 'opinosis', 'opus', 'oxford_flowers102', 'oxford_iiit_pet', 'para_crawl', 'pass', 'patch_camelyon', 'paws_wiki', 'paws_x_wiki', 'penguins', 'pet_finder', 'pg19', 'piqa', 'places365_small', 'placesfull', 'plant_leaves', 'plant_village', 'plantae_k', 'protein_net', 'q_re_cc', 'qa4mre', 'qasc', 'quac', 'quality', 'quickdraw_bitmap', 'race', 'radon', 'real_toxicity_prompts', 'reddit', 'reddit_disentanglement', 'reddit_tifu', 'ref_coco', 'resisc45', 'rlu_atari', 'rlu_atari_checkpoints', 'rlu_atari_checkpoints_ordered', 'rlu_control_suite', 'rlu_dmlab_explore_object_rewards_few', 'rlu_dmlab_explore_object_rewards_many', 'rlu_dmlab_rooms_select_nonmatching_object', 'rlu_dmlab_rooms_watermaze', 'rlu_dmlab_seekavoid_arena01', 'rlu_locomotion', 'rlu_rwrl', 'robomimic_mg', 'robomimic_mh', 'robomimic_ph', 'robonet', 'robosuite_panda_pick_place_can', 'roboturk', 'rock_paper_scissors', 'rock_you', 's3o4d', 'salient_span_wikipedia', 'samsum', 'savee', 'scan', 'scene_parse150', 'schema_guided_dialogue', 'sci_tail', 'scicite', 'scientific_papers', 'scrolls', 'segment_anything', 'sentiment140', 'shapes3d', 'sift1m', 'simpte', 'siscore', 'smallnorb', 'smartwatch_gestures', 'snli', 'so2sat', 'speech_commands', 'spoken_digit', 'squad', 'squad_question_generation', 'stanford_dogs', 'stanford_hydra_dataset_converted_externally_to_rlds', 'stanford_kuka_multimodal_dataset_converted_externally_to_rlds', 'stanford_mask_vit_converted_externally_to_rlds', 'stanford_online_products', 'stanford_robocook_converted_externally_to_rlds', 'star_cfq', 'starcraft_video', 'stl10', 'story_cloze', 'summscreen', 'sun397', 'super_glue', 'svhn_cropped', 'symmetric_solids', 'taco_play', 'tao', 'tatoeba', 'ted_hrlr_translate', 'ted_multi_translate', 'tedlium', 'tf_flowers', 'the300w_lp', 'tiny_shakespeare', 'titanic', 'tokyo_u_lsmo_converted_externally_to_rlds', 'toto', 'trec', 'trivia_qa', 'tydi_qa', 'uc_merced', 'ucf101', 'ucsd_kitchen_dataset_converted_externally_to_rlds', 'ucsd_pick_and_place_dataset_converted_externally_to_rlds', 'uiuc_d3field', 'unified_qa', 'universal_dependencies', 'unnatural_instructions', 'usc_cloth_sim_converted_externally_to_rlds', 'user_libri_audio', 'user_libri_text', 'utaustin_mutex', 'utokyo_pr2_opening_fridge_converted_externally_to_rlds', 'utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds', 'utokyo_saytap_converted_externally_to_rlds', 'utokyo_xarm_bimanual_converted_externally_to_rlds', 'utokyo_xarm_pick_and_place_converted_externally_to_rlds', 'vctk', 'viola', 'visual_domain_decathlon', 'voc', 'voxceleb', 'voxforge', 'waymo_open_dataset', 'web_graph', 'web_nlg', 'web_questions', 'webvid', 'wider_face', 'wiki40b', 'wiki_auto', 'wiki_bio', 'wiki_dialog', 'wiki_table_questions', 'wiki_table_text', 'wikiann', 'wikihow', 'wikipedia', 'wikipedia_toxicity_subtypes', 'wine_quality', 'winogrande', 'wit', 'wit_kaggle', 'wmt13_translate', 'wmt14_translate', 'wmt15_translate', 'wmt16_translate', 'wmt17_translate', 'wmt18_translate', 'wmt19_translate', 'wmt_t2t_translate', 'wmt_translate', 'wordnet', 'wsc273', 'xnli', 'xquad', 'xsum', 'xtreme_pawsx', 'xtreme_pos', 'xtreme_s', 'xtreme_xnli', 'yahoo_ltrc', 'yelp_polarity_reviews', 'yes_no', 'youtube_vis', 'huggingface:acronym_identification', 'huggingface:ade_corpus_v2', 'huggingface:adv_glue', 'huggingface:adversarial_qa', 'huggingface:aeslc', 'huggingface:afrikaans_ner_corpus', 'huggingface:ag_news', 'huggingface:ai2_arc', 'huggingface:air_dialogue', 'huggingface:ajgt_twitter_ar', 'huggingface:allegro_reviews', 'huggingface:allocine', 'huggingface:alt', 'huggingface:amazon_polarity', 'huggingface:amazon_reviews_multi', 'huggingface:amazon_us_reviews', 'huggingface:ambig_qa', 'huggingface:americas_nli', 'huggingface:ami', 'huggingface:amttl', 'huggingface:anli', 'huggingface:app_reviews', 'huggingface:aqua_rat', 'huggingface:aquamuse', 'huggingface:ar_cov19', 'huggingface:ar_res_reviews', 'huggingface:ar_sarcasm', 'huggingface:arabic_billion_words', 'huggingface:arabic_pos_dialect', 'huggingface:arabic_speech_corpus', 'huggingface:arcd', 'huggingface:arsentd_lev', 'huggingface:art', 'huggingface:arxiv_dataset', 'huggingface:ascent_kb', 'huggingface:aslg_pc12', 'huggingface:asnq', 'huggingface:asset', 'huggingface:assin', 'huggingface:assin2', 'huggingface:atomic', 'huggingface:autshumato', 'huggingface:babi_qa', 'huggingface:banking77', 'huggingface:bbaw_egyptian', 'huggingface:bbc_hindi_nli', 'huggingface:bc2gm_corpus', 'huggingface:beans', 'huggingface:best2009', 'huggingface:bianet', 'huggingface:bible_para', 'huggingface:big_patent', 'huggingface:bigbench', 'huggingface:billsum', 'huggingface:bing_coronavirus_query_set', 'huggingface:biomrc', 'huggingface:biosses', 'huggingface:biwi_kinect_head_pose', 'huggingface:blbooks', 'huggingface:blbooksgenre', 'huggingface:blended_skill_talk', 'huggingface:blimp', 'huggingface:blog_authorship_corpus', 'huggingface:bn_hate_speech', 'huggingface:bnl_newspapers', 'huggingface:bookcorpus', 'huggingface:bookcorpusopen', 'huggingface:boolq', 'huggingface:bprec', 'huggingface:break_data', 'huggingface:brwac', 'huggingface:bsd_ja_en', 'huggingface:bswac', 'huggingface:c3', 'huggingface:c4', 'huggingface:cail2018', 'huggingface:caner', 'huggingface:capes', 'huggingface:casino', 'huggingface:catalonia_independence', 'huggingface:cats_vs_dogs', 'huggingface:cawac', 'huggingface:cbt', 'huggingface:cc100', 'huggingface:cc_news', 'huggingface:ccaligned_multilingual', 'huggingface:cdsc', 'huggingface:cdt', 'huggingface:cedr', 'huggingface:cfq', 'huggingface:chr_en', 'huggingface:cifar10', 'huggingface:cifar100', 'huggingface:circa', 'huggingface:civil_comments', 'huggingface:clickbait_news_bg', 'huggingface:climate_fever', 'huggingface:clinc_oos', 'huggingface:clue', 'huggingface:cmrc2018', 'huggingface:cmu_hinglish_dog', 'huggingface:cnn_dailymail', 'huggingface:coached_conv_pref', 'huggingface:coarse_discourse', 'huggingface:codah', 'huggingface:code_search_net', 'huggingface:code_x_glue_cc_clone_detection_big_clone_bench', 'huggingface:code_x_glue_cc_clone_detection_poj104', 'huggingface:code_x_glue_cc_cloze_testing_all', 'huggingface:code_x_glue_cc_cloze_testing_maxmin', 'huggingface:code_x_glue_cc_code_completion_line', 'huggingface:code_x_glue_cc_code_completion_token', 'huggingface:code_x_glue_cc_code_refinement', 'huggingface:code_x_glue_cc_code_to_code_trans', 'huggingface:code_x_glue_cc_defect_detection', 'huggingface:code_x_glue_ct_code_to_text', 'huggingface:code_x_glue_tc_nl_code_search_adv', 'huggingface:code_x_glue_tc_text_to_code', 'huggingface:code_x_glue_tt_text_to_text', 'huggingface:com_qa', 'huggingface:common_gen', 'huggingface:common_language', 'huggingface:common_voice', 'huggingface:commonsense_qa', 'huggingface:competition_math', 'huggingface:compguesswhat', 'huggingface:conceptnet5', 'huggingface:conceptual_12m', 'huggingface:conceptual_captions', 'huggingface:conll2000', 'huggingface:conll2002', 'huggingface:conll2003', 'huggingface:conll2012_ontonotesv5', 'huggingface:conllpp', 'huggingface:consumer-finance-complaints', 'huggingface:conv_ai', 'huggingface:conv_ai_2', 'huggingface:conv_ai_3', 'huggingface:conv_questions', 'huggingface:coqa', 'huggingface:cord19', 'huggingface:cornell_movie_dialog', 'huggingface:cos_e', 'huggingface:cosmos_qa', 'huggingface:counter', 'huggingface:covid_qa_castorini', 'huggingface:covid_qa_deepset', 'huggingface:covid_qa_ucsd', 'huggingface:covid_tweets_japanese', 'huggingface:covost2', 'huggingface:cppe-5', 'huggingface:craigslist_bargains', 'huggingface:crawl_domain', 'huggingface:crd3', 'huggingface:crime_and_punish', 'huggingface:crows_pairs', 'huggingface:cryptonite', 'huggingface:cs_restaurants', 'huggingface:cuad', 'huggingface:curiosity_dialogs', 'huggingface:daily_dialog', 'huggingface:dane', 'huggingface:danish_political_comments', 'huggingface:dart', 'huggingface:datacommons_factcheck', 'huggingface:dbpedia_14', 'huggingface:dbrd', 'huggingface:deal_or_no_dialog', 'huggingface:definite_pronoun_resolution', 'huggingface:dengue_filipino', 'huggingface:dialog_re', 'huggingface:diplomacy_detection', 'huggingface:disaster_response_messages', 'huggingface:discofuse', 'huggingface:discovery', 'huggingface:disfl_qa', 'huggingface:doc2dial', 'huggingface:docred', 'huggingface:doqa', 'huggingface:dream', 'huggingface:drop', 'huggingface:duorc', 'huggingface:dutch_social', 'huggingface:dyk', 'huggingface:e2e_nlg', 'huggingface:e2e_nlg_cleaned', 'huggingface:ecb', 'huggingface:ecthr_cases', 'huggingface:eduge', 'huggingface:ehealth_kd', 'huggingface:eitb_parcc', 'huggingface:electricity_load_diagrams', 'huggingface:eli5', 'huggingface:eli5_category', 'huggingface:elkarhizketak', 'huggingface:emea', 'huggingface:emo', 'huggingface:emotion', 'huggingface:emotone_ar', 'huggingface:empathetic_dialogues', 'huggingface:enriched_web_nlg', 'huggingface:enwik8', 'huggingface:eraser_multi_rc', 'huggingface:esnli', 'huggingface:eth_py150_open', 'huggingface:ethos', 'huggingface:ett', 'huggingface:eu_regulatory_ir', 'huggingface:eurlex', 'huggingface:euronews', 'huggingface:europa_eac_tm', 'huggingface:europa_ecdc_tm', 'huggingface:europarl_bilingual', 'huggingface:event2Mind', 'huggingface:evidence_infer_treatment', 'huggingface:exams', 'huggingface:factckbr', 'huggingface:fake_news_english', 'huggingface:fake_news_filipino', 'huggingface:farsi_news', 'huggingface:fashion_mnist', 'huggingface:fever', 'huggingface:few_rel', 'huggingface:financial_phrasebank', 'huggingface:finer', 'huggingface:flores', 'huggingface:flue', 'huggingface:food101', 'huggingface:fquad', 'huggingface:freebase_qa', 'huggingface:gap', 'huggingface:gem', 'huggingface:generated_reviews_enth', 'huggingface:generics_kb', 'huggingface:german_legal_entity_recognition', 'huggingface:germaner', 'huggingface:germeval_14', 'huggingface:giga_fren', 'huggingface:gigaword', 'huggingface:glucose', 'huggingface:glue', 'huggingface:gnad10', 'huggingface:go_emotions', 'huggingface:gooaq', 'huggingface:google_wellformed_query', 'huggingface:grail_qa', 'huggingface:great_code', 'huggingface:greek_legal_code', 'huggingface:gsm8k', 'huggingface:guardian_authorship', 'huggingface:gutenberg_time', 'huggingface:hans', 'huggingface:hansards', 'huggingface:hard', 'huggingface:harem', 'huggingface:has_part', 'huggingface:hate_offensive', 'huggingface:hate_speech18', 'huggingface:hate_speech_filipino', 'huggingface:hate_speech_offensive', 'huggingface:hate_speech_pl', 'huggingface:hate_speech_portuguese', 'huggingface:hatexplain', 'huggingface:hausa_voa_ner', 'huggingface:hausa_voa_topics', 'huggingface:hda_nli_hindi', 'huggingface:head_qa', 'huggingface:health_fact', 'huggingface:hebrew_projectbenyehuda', 'huggingface:hebrew_sentiment', 'huggingface:hebrew_this_world', 'huggingface:hellaswag', 'huggingface:hendrycks_test', 'huggingface:hind_encorp', 'huggingface:hindi_discourse', 'huggingface:hippocorpus', 'huggingface:hkcancor', 'huggingface:hlgd', 'huggingface:hope_edi', 'huggingface:hotpot_qa', 'huggingface:hover', 'huggingface:hrenwac_para', 'huggingface:hrwac', 'huggingface:humicroedit', 'huggingface:hybrid_qa', 'huggingface:hyperpartisan_news_detection', 'huggingface:iapp_wiki_qa_squad', 'huggingface:id_clickbait', 'huggingface:id_liputan6', 'huggingface:id_nergrit_corpus', 'huggingface:id_newspapers_2018', 'huggingface:id_panl_bppt', 'huggingface:id_puisi', 'huggingface:igbo_english_machine_translation', 'huggingface:igbo_monolingual', 'huggingface:igbo_ner', 'huggingface:ilist', 'huggingface:imagenet-1k', 'huggingface:imagenet_sketch', 'huggingface:imdb', 'huggingface:imdb_urdu_reviews', 'huggingface:imppres', 'huggingface:indic_glue', 'huggingface:indonli', 'huggingface:indonlu', 'huggingface:inquisitive_qg', 'huggingface:interpress_news_category_tr', 'huggingface:interpress_news_category_tr_lite', 'huggingface:irc_disentangle', 'huggingface:isixhosa_ner_corpus', 'huggingface:isizulu_ner_corpus', 'huggingface:iwslt2017', 'huggingface:jeopardy', 'huggingface:jfleg', 'huggingface:jigsaw_toxicity_pred', 'huggingface:jigsaw_unintended_bias', 'huggingface:jnlpba', 'huggingface:journalists_questions', 'huggingface:kan_hope', 'huggingface:kannada_news', 'huggingface:kd_conv', 'huggingface:kde4', 'huggingface:kelm', 'huggingface:kilt_tasks', 'huggingface:kilt_wikipedia', 'huggingface:kinnews_kirnews', 'huggingface:klue', 'huggingface:kor_3i4k', 'huggingface:kor_hate', 'huggingface:kor_ner', 'huggingface:kor_nli', 'huggingface:kor_nlu', 'huggingface:kor_qpair', 'huggingface:kor_sae', 'huggingface:kor_sarcasm', 'huggingface:labr', 'huggingface:lama', 'huggingface:lambada', 'huggingface:large_spanish_corpus', 'huggingface:laroseda', 'huggingface:lc_quad', 'huggingface:lccc', 'huggingface:lener_br', 'huggingface:lex_glue', 'huggingface:liar', 'huggingface:librispeech_asr', 'huggingface:librispeech_lm', 'huggingface:limit', 'huggingface:lince', 'huggingface:linnaeus', 'huggingface:liveqa', 'huggingface:lj_speech', 'huggingface:lm1b', 'huggingface:lst20', 'huggingface:m_lama', 'huggingface:mac_morpho', 'huggingface:makhzan', 'huggingface:masakhaner', 'huggingface:math_dataset', 'huggingface:math_qa', 'huggingface:matinf', 'huggingface:mbpp', 'huggingface:mc4', 'huggingface:mc_taco', 'huggingface:md_gender_bias', 'huggingface:mdd', 'huggingface:med_hop', 'huggingface:medal', 'huggingface:medical_dialog', 'huggingface:medical_questions_pairs', 'huggingface:medmcqa', 'huggingface:menyo20k_mt', 'huggingface:meta_woz', 'huggingface:metashift', 'huggingface:metooma', 'huggingface:metrec', 'huggingface:miam', 'huggingface:mkb', 'huggingface:mkqa', 'huggingface:mlqa', 'huggingface:mlsum', 'huggingface:mnist', 'huggingface:mocha', 'huggingface:monash_tsf', 'huggingface:moroco', 'huggingface:movie_rationales', 'huggingface:mrqa', 'huggingface:ms_marco', 'huggingface:ms_terms', 'huggingface:msr_genomics_kbcomp', 'huggingface:msr_sqa', 'huggingface:msr_text_compression', 'huggingface:msr_zhen_translation_parity', 'huggingface:msra_ner', 'huggingface:mt_eng_vietnamese', 'huggingface:muchocine', 'huggingface:multi_booked', 'huggingface:multi_eurlex', 'huggingface:multi_news', 'huggingface:multi_nli', 'huggingface:multi_nli_mismatch', 'huggingface:multi_para_crawl', 'huggingface:multi_re_qa', 'huggingface:multi_woz_v22', 'huggingface:multi_x_science_sum', 'huggingface:multidoc2dial', 'huggingface:multilingual_librispeech', 'huggingface:mutual_friends', 'huggingface:mwsc', 'huggingface:myanmar_news', 'huggingface:narrativeqa', 'huggingface:narrativeqa_manual', 'huggingface:natural_questions', 'huggingface:ncbi_disease', 'huggingface:nchlt', 'huggingface:ncslgr', 'huggingface:nell', 'huggingface:neural_code_search', 'huggingface:news_commentary', 'huggingface:newsgroup', 'huggingface:newsph', 'huggingface:newsph_nli', 'huggingface:newspop', 'huggingface:newsqa', 'huggingface:newsroom', 'huggingface:nkjp-ner', 'huggingface:nli_tr', 'huggingface:nlu_evaluation_data', 'huggingface:norec', 'huggingface:norne', 'huggingface:norwegian_ner', 'huggingface:nq_open', 'huggingface:nsmc', 'huggingface:numer_sense', 'huggingface:numeric_fused_head', 'huggingface:oclar', 'huggingface:offcombr', 'huggingface:offenseval2020_tr', 'huggingface:offenseval_dravidian', 'huggingface:ofis_publik', 'huggingface:ohsumed', 'huggingface:ollie', 'huggingface:omp', 'huggingface:onestop_english', 'huggingface:onestop_qa', 'huggingface:open_subtitles', 'huggingface:openai_humaneval', 'huggingface:openbookqa', 'huggingface:openslr', 'huggingface:openwebtext', 'huggingface:opinosis', 'huggingface:opus100', 'huggingface:opus_books', 'huggingface:opus_dgt', 'huggingface:opus_dogc', 'huggingface:opus_elhuyar', 'huggingface:opus_euconst', 'huggingface:opus_finlex', 'huggingface:opus_fiskmo', 'huggingface:opus_gnome', 'huggingface:opus_infopankki', 'huggingface:opus_memat', 'huggingface:opus_montenegrinsubs', 'huggingface:opus_openoffice', 'huggingface:opus_paracrawl', 'huggingface:opus_rf', 'huggingface:opus_tedtalks', 'huggingface:opus_ubuntu', 'huggingface:opus_wikipedia', 'huggingface:opus_xhosanavy', 'huggingface:orange_sum', 'huggingface:oscar', 'huggingface:para_crawl', 'huggingface:para_pat', 'huggingface:parsinlu_reading_comprehension', 'huggingface:pass', 'huggingface:paws', 'huggingface:paws-x', 'huggingface:pec', 'huggingface:peer_read', 'huggingface:peoples_daily_ner', 'huggingface:per_sent', 'huggingface:persian_ner', 'huggingface:pg19', 'huggingface:php', 'huggingface:piaf', 'huggingface:pib', 'huggingface:piqa', 'huggingface:pn_summary', 'huggingface:poem_sentiment', 'huggingface:polemo2', 'huggingface:poleval2019_cyberbullying', 'huggingface:poleval2019_mt', 'huggingface:polsum', 'huggingface:polyglot_ner', 'huggingface:prachathai67k', 'huggingface:pragmeval', 'huggingface:proto_qa', 'huggingface:psc', 'huggingface:ptb_text_only', 'huggingface:pubmed', 'huggingface:pubmed_qa', 'huggingface:py_ast', 'huggingface:qa4mre', 'huggingface:qa_srl', 'huggingface:qa_zre', 'huggingface:qangaroo', 'huggingface:qanta', 'huggingface:qasc', 'huggingface:qasper', 'huggingface:qed', 'huggingface:qed_amara', 'huggingface:quac', 'huggingface:quail', 'huggingface:quarel', 'huggingface:quartz', 'huggingface:quickdraw', 'huggingface:quora', 'huggingface:quoref', 'huggingface:race', 'huggingface:re_dial', 'huggingface:reasoning_bg', 'huggingface:recipe_nlg', 'huggingface:reclor', 'huggingface:red_caps', 'huggingface:reddit', 'huggingface:reddit_tifu', 'huggingface:refresd', 'huggingface:reuters21578', 'huggingface:riddle_sense', 'huggingface:ro_sent', 'huggingface:ro_sts', 'huggingface:ro_sts_parallel', 'huggingface:roman_urdu', 'huggingface:roman_urdu_hate_speech', 'huggingface:ronec', 'huggingface:ropes', 'huggingface:rotten_tomatoes', 'huggingface:russian_super_glue', 'huggingface:rvl_cdip', 'huggingface:s2orc', 'huggingface:samsum', 'huggingface:sanskrit_classic', 'huggingface:saudinewsnet', 'huggingface:sberquad', 'huggingface:sbu_captions', 'huggingface:scan', 'huggingface:scb_mt_enth_2020', 'huggingface:scene_parse_150', 'huggingface:schema_guided_dstc8', 'huggingface:scicite', 'huggingface:scielo', 'huggingface:scientific_papers', 'huggingface:scifact', 'huggingface:sciq', 'huggingface:scitail', 'huggingface:scitldr', 'huggingface:search_qa', 'huggingface:sede', 'huggingface:selqa', 'huggingface:sem_eval_2010_task_8', 'huggingface:sem_eval_2014_task_1', 'huggingface:sem_eval_2018_task_1', 'huggingface:sem_eval_2020_task_11', 'huggingface:sent_comp', 'huggingface:senti_lex', 'huggingface:senti_ws', 'huggingface:sentiment140', 'huggingface:sepedi_ner', 'huggingface:sesotho_ner_corpus', 'huggingface:setimes', 'huggingface:setswana_ner_corpus', 'huggingface:sharc', 'huggingface:sharc_modified', 'huggingface:sick', 'huggingface:silicone', 'huggingface:simple_questions_v2', 'huggingface:siswati_ner_corpus', 'huggingface:smartdata', 'huggingface:sms_spam', 'huggingface:snips_built_in_intents', 'huggingface:snli', 'huggingface:snow_simplified_japanese_corpus', 'huggingface:so_stacksample', 'huggingface:social_bias_frames', 'huggingface:social_i_qa', 'huggingface:sofc_materials_articles', ...]
Load a dataset
tfds.load
The easiest way of loading a dataset is tfds.load
. It will:
- Download the data and save it as
tfrecord
files. - Load the
tfrecord
and create thetf.data.Dataset
.
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_PrefetchDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}> 2024-12-14 12:41:58.857496: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:152] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Some common arguments:
split=
: Which split to read (e.g.'train'
,['train', 'test']
,'train[80%:]'
,...). See our split API guide.shuffle_files=
: Control whether to shuffle the files between each epoch (TFDS store big datasets in multiple smaller files).data_dir=
: Location where the dataset is saved ( defaults to~/tensorflow_datasets/
)with_info=True
: Returns thetfds.core.DatasetInfo
containing dataset metadatadownload=False
: Disable download
tfds.builder
tfds.load
is a thin wrapper around tfds.core.DatasetBuilder
. You can get the same output using the tfds.core.DatasetBuilder
API:
builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_PrefetchDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>
tfds build
CLI
If you want to generate a specific dataset, you can use the tfds
command line. For example:
tfds build mnist
See the doc for available flags.
Iterate over a dataset
As dict
By default, the tf.data.Dataset
object contains a dict
of tf.Tensor
s:
ds = tfds.load('mnist', split='train')
ds = ds.take(1) # Only take a single example
for example in ds: # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
print(list(example.keys()))
image = example["image"]
label = example["label"]
print(image.shape, label)
['image', 'label'] (28, 28, 1) tf.Tensor(4, shape=(), dtype=int64) 2024-12-14 12:42:00.177868: W tensorflow/core/kernels/data/cache_dataset_ops.cc:914] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
To find out the dict
key names and structure, look at the dataset documentation in our catalog. For example: mnist documentation.
As tuple (as_supervised=True
)
By using as_supervised=True
, you can get a tuple (features, label)
instead for supervised datasets.
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)
for image, label in ds: # example is (image, label)
print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64) 2024-12-14 12:42:01.224313: W tensorflow/core/kernels/data/cache_dataset_ops.cc:914] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
As numpy (tfds.as_numpy
)
Uses tfds.as_numpy
to convert:
tf.Tensor
->np.array
tf.data.Dataset
->Iterator[Tree[np.array]]
(Tree
can be arbitrary nestedDict
,Tuple
)
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)
for image, label in tfds.as_numpy(ds):
print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4 2024-12-14 12:42:02.065492: W tensorflow/core/kernels/data/cache_dataset_ops.cc:914] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
As batched tf.Tensor (batch_size=-1
)
By using batch_size=-1
, you can load the full dataset in a single batch.
This can be combined with as_supervised=True
and tfds.as_numpy
to get the the data as (np.array, np.array)
:
image, label = tfds.as_numpy(tfds.load(
'mnist',
split='test',
batch_size=-1,
as_supervised=True,
))
print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)
Be careful that your dataset can fit in memory, and that all examples have the same shape.
Benchmark your datasets
Benchmarking a dataset is a simple tfds.benchmark
call on any iterable (e.g. tf.data.Dataset
, tfds.as_numpy
,...).
ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)
tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32) # Second epoch much faster due to auto-caching
************ Summary ************ Examples/sec (First included) 45061.33 ex/sec (total: 60032 ex, 1.33 sec) Examples/sec (First only) 72.23 ex/sec (total: 32 ex, 0.44 sec) Examples/sec (First excluded) 67477.64 ex/sec (total: 60000 ex, 0.89 sec) ************ Summary ************ Examples/sec (First included) 199832.93 ex/sec (total: 60032 ex, 0.30 sec) Examples/sec (First only) 2367.04 ex/sec (total: 32 ex, 0.01 sec) Examples/sec (First excluded) 209137.96 ex/sec (total: 60000 ex, 0.29 sec)
- Do not forget to normalize the results per batch size with the
batch_size=
kwarg. - In the summary, the first warmup batch is separated from the other ones to capture
tf.data.Dataset
extra setup time (e.g. buffers initialization,...). - Notice how the second iteration is much faster due to TFDS auto-caching.
tfds.benchmark
returns atfds.core.BenchmarkResult
which can be inspected for further analysis.
Build end-to-end pipeline
To go further, you can look:
- Our end-to-end Keras example to see a full training pipeline (with batching, shuffling,...).
- Our performance guide to improve the speed of your pipelines (tip: use
tfds.benchmark(ds)
to benchmark your datasets).
Visualization
tfds.as_dataframe
tf.data.Dataset
objects can be converted to pandas.DataFrame
with tfds.as_dataframe
to be visualized on Colab.
- Add the
tfds.core.DatasetInfo
as second argument oftfds.as_dataframe
to visualize images, audio, texts, videos,... - Use
ds.take(x)
to only display the firstx
examples.pandas.DataFrame
will load the full dataset in-memory, and can be very expensive to display.
ds, info = tfds.load('mnist', split='train', with_info=True)
tfds.as_dataframe(ds.take(4), info)
2024-12-14 12:42:05.775782: W tensorflow/core/kernels/data/cache_dataset_ops.cc:914] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
tfds.show_examples
tfds.show_examples
returns a matplotlib.figure.Figure
(only image datasets supported now):
ds, info = tfds.load('mnist', split='train', with_info=True)
fig = tfds.show_examples(ds, info)
2024-12-14 12:42:06.859043: W tensorflow/core/kernels/data/cache_dataset_ops.cc:914] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Access the dataset metadata
All builders include a tfds.core.DatasetInfo
object containing the dataset metadata.
It can be accessed through:
- The
tfds.load
API:
ds, info = tfds.load('mnist', with_info=True)
- The
tfds.core.DatasetBuilder
API:
builder = tfds.builder('mnist')
info = builder.info
The dataset info contains additional informations about the dataset (version, citation, homepage, description,...).
print(info)
tfds.core.DatasetInfo( name='mnist', full_name='mnist/3.0.1', description=""" The MNIST database of handwritten digits. """, homepage='http://yann.lecun.com/exdb/mnist/', data_dir='gs://tensorflow-datasets/datasets/mnist/3.0.1', file_format=tfrecord, download_size=11.06 MiB, dataset_size=21.00 MiB, features=FeaturesDict({ 'image': Image(shape=(28, 28, 1), dtype=uint8), 'label': ClassLabel(shape=(), dtype=int64, num_classes=10), }), supervised_keys=('image', 'label'), disable_shuffling=False, splits={ 'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>, }, citation="""@article{lecun2010mnist, title={MNIST handwritten digit database}, author={LeCun, Yann and Cortes, Corinna and Burges, CJ}, journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist}, volume={2}, year={2010} }""", )
Features metadata (label names, image shape,...)
Access the tfds.features.FeatureDict
:
info.features
FeaturesDict({ 'image': Image(shape=(28, 28, 1), dtype=uint8), 'label': ClassLabel(shape=(), dtype=int64, num_classes=10), })
Number of classes, label names:
print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7)) # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10 ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] 7 7
Shapes, dtypes:
print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
WARNING:absl:`FeatureConnector.dtype` is deprecated. Please change your code to use NumPy with the field `FeatureConnector.np_dtype` or use TensorFlow with the field `FeatureConnector.tf_dtype`. WARNING:absl:`FeatureConnector.dtype` is deprecated. Please change your code to use NumPy with the field `FeatureConnector.np_dtype` or use TensorFlow with the field `FeatureConnector.tf_dtype`. {'image': (28, 28, 1), 'label': ()} {'image': tf.uint8, 'label': tf.int64} (28, 28, 1) <dtype: 'uint8'>
Split metadata (e.g. split names, number of examples,...)
Access the tfds.core.SplitDict
:
print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}
Available splits:
print(list(info.splits.keys()))
['test', 'train']
Get info on individual split:
print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000 ['mnist-train.tfrecord-00000-of-00001'] 1
It also works with the subsplit API:
print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000 [FileInstruction(filename='gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, examples_in_shard=60000)]
Troubleshooting
Manual download (if download fails)
If download fails for some reason (e.g. offline,...). You can always manually download the data yourself and place it in the manual_dir
(defaults to ~/tensorflow_datasets/downloads/manual/
.
To find out which urls to download, look into:
For new datasets (implemented as folder):
tensorflow_datasets/
<type>/<dataset_name>/checksums.tsv
. For example:tensorflow_datasets/datasets/bool_q/checksums.tsv
.You can find the dataset source location in our catalog.
For old datasets:
tensorflow_datasets/url_checksums/<dataset_name>.txt
Fixing NonMatchingChecksumError
TFDS ensure determinism by validating the checksums of downloaded urls.
If NonMatchingChecksumError
is raised, might indicate:
- The website may be down (e.g.
503 status code
). Please check the url. - For Google Drive URLs, try again later as Drive sometimes rejects downloads when too many people access the same URL. See bug
- The original datasets files may have been updated. In this case the TFDS dataset builder should be updated. Please open a new Github issue or PR:
- Register the new checksums with
tfds build --register_checksums
- Eventually update the dataset generation code.
- Update the dataset
VERSION
- Update the dataset
RELEASE_NOTES
: What caused the checksums to change ? Did some examples changed ? - Make sure the dataset can still be built.
- Send us a PR
- Register the new checksums with
Citation
If you're using tensorflow-datasets
for a paper, please include the following citation, in addition to any citation specific to the used datasets (which can be found in the dataset catalog).
@misc{TFDS,
title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
howpublished = {\url{https://www.tensorflow.org/datasets} },
}