Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Conv2DBackpropFilter
#include <nn_ops.h>
Computes the gradients of convolution with respect to the filter.
Summary
Args:
- scope: A Scope object
- input: 4-D with shape
[batch, in_height, in_width, in_channels]
.
- filter_sizes: An integer vector representing the tensor shape of
filter
, where filter
is a 4-D [filter_height, filter_width, in_channels, out_channels]
tensor.
- out_backprop: 4-D with shape
[batch, out_height, out_width, out_channels]
. Gradients w.r.t. the output of the convolution.
- strides: The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format.
- padding: The type of padding algorithm to use.
Optional attributes (see Attrs
):
- explicit_paddings: If
padding
is "EXPLICIT"
, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is explicit_paddings[2 * i]
and explicit_paddings[2 * i + 1]
, respectively. If padding
is not "EXPLICIT"
, explicit_paddings
must be empty.
- data_format: Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width].
- dilations: 1-D tensor of length 4. The dilation factor for each dimension of
input
. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of data_format
, see above for details. Dilations in the batch and depth dimensions must be 1.
Returns:
Output
: 4-D with shape [filter_height, filter_width, in_channels, out_channels]
. Gradient w.r.t. the filter
input of the convolution.
Constructors and Destructors
|
Conv2DBackpropFilter(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter_sizes, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
Conv2DBackpropFilter(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter_sizes, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2DBackpropFilter::Attrs & attrs)
|
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
Attrs DataFormat(
StringPiece x
)
Dilations
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
ExplicitPaddings
Attrs ExplicitPaddings(
const gtl::ArraySlice< int > & x
)
UseCudnnOnGpu
Attrs UseCudnnOnGpu(
bool x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-11-15 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-11-15 UTC."],[],[],null,["# tensorflow::ops::Conv2DBackpropFilter Class Reference\n\ntensorflow::ops::Conv2DBackpropFilter\n=====================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradients of convolution with respect to the filter.\n\nSummary\n-------\n\nArgs:\n\n- scope: A [Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, in_channels]`.\n- filter_sizes: An integer vector representing the tensor shape of `filter`, where `filter` is a 4-D `[filter_height, filter_width, in_channels, out_channels]` tensor.\n- out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution.\n- strides: The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs)):\n\n- explicit_paddings: If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n- data_format: Specify the data format of the input and output data. With the default format \"NHWC\", the data is stored in the order of: \\[batch, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, in_channels, in_height, in_width\\].\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`. Gradient w.r.t. the `filter` input of the convolution.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv2DBackpropFilter](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a799b52a54b6ed6387afe8c2147aff0da)`(const ::`[tensorflow::Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter_sizes, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv2DBackpropFilter](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a7bec0a5bc85d2c452e02c02feaa30bec)`(const ::`[tensorflow::Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter_sizes, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv2DBackpropFilter::Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a627aac02d2a36f95929e36f2027c8672) | [Operation](/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1aefc74eafda94631873fa7b35fb79bb9c) | `::`[tensorflow::Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1aaae19666c83ef2abfd5d2b10b9cc1b79)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a24db1aa2b5b3fb8b00b8939b1708eb9c)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a6cd0bf5f17fa87c8a484ea9288ce4a05)`() const ` | |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a67e760b8ede5ea02dac7dee92c21a4c7)`(StringPiece x)` | [Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1aa2179fd147f84ae7f11f6f1764b222db)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs) |\n| [ExplicitPaddings](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a737b3cc66404da9e6005481ea4e794d3)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs) |\n| [UseCudnnOnGpu](#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1a953aaf76215ad6a39ef6ca399022357c)`(bool x)` | [Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_filter_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv2DBackpropFilter::Attrs](/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-filter/attrs) | Optional attribute setters for [Conv2DBackpropFilter](/api_docs/cc/class/tensorflow/ops/conv2-d-backprop-filter#classtensorflow_1_1ops_1_1_conv2_d_backprop_filter). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv2DBackpropFilter\n\n```gdscript\n Conv2DBackpropFilter(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter_sizes,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv2DBackpropFilter\n\n```gdscript\n Conv2DBackpropFilter(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter_sizes,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv2DBackpropFilter::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### ExplicitPaddings\n\n```gdscript\nAttrs ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### UseCudnnOnGpu\n\n```text\nAttrs UseCudnnOnGpu(\n bool x\n)\n```"]]