Module: tf_agents.bandits.policies
Stay organized with collections
Save and categorize content based on your preferences.
Module importing all policies.
Modules
bernoulli_thompson_sampling_policy
module: Policy for Bernoulli Thompson Sampling.
boltzmann_reward_prediction_policy
module: Policy for reward prediction and boltzmann exploration.
categorical_policy
module: Policy that chooses actions based on a categorical distribution.
constraints
module: An API for representing constraints.
falcon_reward_prediction_policy
module: Policy that samples actions based on the FALCON algorithm.
greedy_multi_objective_neural_policy
module: Policy for greedy multi-objective prediction.
greedy_reward_prediction_policy
module: Policy for greedy reward prediction.
lin_ucb_policy
module: Linear UCB Policy.
linalg
module: Utility code for linear algebra functions.
linear_bandit_policy
module: Linear Bandit Policy.
linear_thompson_sampling_policy
module: Linear Thompson Sampling Policy.
loss_utils
module: Loss utility code.
mixture_policy
module: A policy class that chooses from a set of policies to get the actions from.
neural_linucb_policy
module: Neural + LinUCB Policy.
ranking_policy
module: Ranking policy.
reward_prediction_base_policy
module: Base policy that samples actions based on predicted rewards.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# Module: tf_agents.bandits.policies\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/bandits/policies/__init__.py) |\n\nModule importing all policies.\n\nModules\n-------\n\n[`bernoulli_thompson_sampling_policy`](../../tf_agents/bandits/policies/bernoulli_thompson_sampling_policy) module: Policy for Bernoulli Thompson Sampling.\n\n[`boltzmann_reward_prediction_policy`](../../tf_agents/bandits/policies/boltzmann_reward_prediction_policy) module: Policy for reward prediction and boltzmann exploration.\n\n[`categorical_policy`](../../tf_agents/bandits/policies/categorical_policy) module: Policy that chooses actions based on a categorical distribution.\n\n[`constraints`](../../tf_agents/bandits/policies/constraints) module: An API for representing constraints.\n\n[`falcon_reward_prediction_policy`](../../tf_agents/bandits/policies/falcon_reward_prediction_policy) module: Policy that samples actions based on the FALCON algorithm.\n\n[`greedy_multi_objective_neural_policy`](../../tf_agents/bandits/policies/greedy_multi_objective_neural_policy) module: Policy for greedy multi-objective prediction.\n\n[`greedy_reward_prediction_policy`](../../tf_agents/bandits/policies/greedy_reward_prediction_policy) module: Policy for greedy reward prediction.\n\n[`lin_ucb_policy`](../../tf_agents/bandits/policies/lin_ucb_policy) module: Linear UCB Policy.\n\n[`linalg`](../../tf_agents/bandits/policies/linalg) module: Utility code for linear algebra functions.\n\n[`linear_bandit_policy`](../../tf_agents/bandits/policies/linear_bandit_policy) module: Linear Bandit Policy.\n\n[`linear_thompson_sampling_policy`](../../tf_agents/bandits/policies/linear_thompson_sampling_policy) module: Linear Thompson Sampling Policy.\n\n[`loss_utils`](../../tf_agents/bandits/policies/loss_utils) module: Loss utility code.\n\n[`mixture_policy`](../../tf_agents/bandits/policies/mixture_policy) module: A policy class that chooses from a set of policies to get the actions from.\n\n[`neural_linucb_policy`](../../tf_agents/bandits/policies/neural_linucb_policy) module: Neural + LinUCB Policy.\n\n[`ranking_policy`](../../tf_agents/bandits/policies/ranking_policy) module: Ranking policy.\n\n[`reward_prediction_base_policy`](../../tf_agents/bandits/policies/reward_prediction_base_policy) module: Base policy that samples actions based on predicted rewards."]]