Computes the lifted structured loss.
tfa.losses.LiftedStructLoss(
margin: tfa.types.FloatTensorLike
= 1.0,
name: Optional[str] = None,
**kwargs
)
The loss encourages the positive distances (between a pair of embeddings
with the same labels) to be smaller than any negative distances (between
a pair of embeddings with different labels) in the mini-batch in a way
that is differentiable with respect to the embedding vectors.
See: https://arxiv.org/abs/1511.06452
Args |
margin
|
Float, margin term in the loss definition.
|
name
|
Optional name for the op.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
Returns the config dictionary for a Loss
instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] , except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size] ,
then the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is
scaled by the corresponding value of sample_weight . (Note
ondN-1 : all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note
dN-1 because all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|